fiona y shapely

Note

Fecha Autores
25 Junio 2014

©2014 Fernando González Cortés

Excepto donde quede reflejado de otra manera, la presente documentación se halla bajo licencia : Creative Commons (Creative Commons - Attribution - Share Alike: http://creativecommons.org/licenses/by-sa/3.0/deed.es)

Ahora que sabemos hacer cosas interesantes con Shapely, vamos a ver cómo podemos utilizar ésta librería con datos leídos por Fiona.

shape y mapping

Las funciones shape y mapping nos permiten convertir desde objetos geométricos de fiona a objetos geométricos de shapely y viceversa.

Ejercicio. Qué hace el siguiente código (shape_mean_area.py):

#! /usr/bin/env python

import sys
import fiona

file = sys.argv[1]

d = fiona.open(file)

total = 0
for feature in d:
        total = total + shape(feature["geometry"]).area

print total / len(d)

d.close()

Ejemplo de utilización:

./shape_mean_area.py /home/user/data/north_carolina/shape/urbanarea.shp
13941122.63

Ejercicio. Crear un shapefile con un buffer alrededor de cada hospital. Podemos usar la siguiente plantilla:

#! /usr/bin/env python

import sys
import fiona
from shapely.geometry import shape, mapping

d = fiona.open("/home/user/data/north_carolina/shape/hospitals.shp")

outputSchema = {
        "geometry": "Polygon",
        "properties": {
                ("NAME", d.schema["properties"]["NAME"])
        }
}
output = fiona.open("/tmp/hospitals_buffer.shp", "w", driver="ESRI Shapefile", crs=d.crs, schema=outputSchema)

for feature in d:
        newFeature = {}
        newFeature["geometry"] = ...
        newFeature["properties"] = ...
        output.write(newFeature)

output.close()

d.close()

Solución (shape_write_buffer.py):

#! /usr/bin/env python

import sys
import fiona
from shapely.geometry import shape, mapping

d = fiona.open("/home/user/data/north_carolina/shape/hospitals.shp")

outputSchema = {
        "geometry": "Polygon",
        "properties": {
                ("NAME", d.schema["properties"]["NAME"])
        }
}
output = fiona.open("/tmp/hospitals_buffer.shp", "w", driver="ESRI Shapefile", crs=d.crs, schema=outputSchema)

for feature in d:
        newFeature = {}
        newFeature["geometry"] = mapping(shape(feature["geometry"]).buffer(10000))
        newFeature["properties"] = {
                "NAME" : feature["properties"]["NAME"]
        }
        output.write(newFeature)

output.close()

d.close()

Filtrado espacial

Ejercicio: Escribir un fichero que contenga sólo las areas urbanas cuya area es mayor que 13941122.63 (la media):

#! /usr/bin/env python

import sys
import fiona
from shapely.geometry import shape, mapping

d = fiona.open("/home/user/data/north_carolina/shape/urbanarea.shp")

output = fiona.open("/tmp/big_urban_areas.shp", "w", driver="ESRI Shapefile", crs=d.crs, schema=d.schema)

for feature in d:
        if shape(feature["geometry"]).area > 13941122.63:
                newFeature = {}
                newFeature["geometry"] = feature["geometry"]
                newFeature["properties"] = feature["properties"]
                output.write(newFeature)

output.close()

d.close()

Ejercicio: Obtener el nombre de los hospitales que están a menos de veinte kilómetros del punto (446845,161978). ¿Es posible utilizar el programa “fiona_projection_selection_write.py”? ¿Qué cambios hay que hacerle?

Solución: Basta con importar las funciones de Shapely que vamos a usar en nuestra expressión:

from shapely.geometry import shape, mapping
from shapely.wkt import dumps, loads

y ejecutar la siguiente instrucción:

./shape_projection_selection_write.py ~/data/north_carolina/shape/hospitals.shp /tmp/nearby_hospitals.shp 'shape(feature["geometry"]).distance(loads("POINT(446845 161978)")) < 20000' 'name as NAME'

Proyecciones espaciales

Modificar fiona_goldsboro_hospitals_write.py para que escriba un buffer de 4km alrededor de cada hospital.

Solución (fiona_goldsboro_hospitals_buffer_write.py):

#! /usr/bin/env python

import sys
import fiona
from shapely.geometry import shape, mapping

d = fiona.open("/home/user/data/north_carolina/shape/hospitals.shp")

outputSchema = {
        "geometry": 'Polygon',
        "properties": {
                ("NAME", d.schema["properties"]["NAME"])
        }
}
output = fiona.open("/tmp/hospitals_in_goldsboro_buffer.shp", "w", driver="ESRI Shapefile", crs=d.crs, schema=outputSchema)

for feature in d:
        if feature["properties"]["CITY"]=="Goldsboro":
                newFeature = {
                        "geometry" : mapping(shape(feature["geometry"]).buffer(4000)),
                        "properties" : {
                                "NAME" : feature["properties"]["NAME"]
                        }
                }

                output.write(newFeature)

output.close()

d.close()

Ejercicio:: ¿Es posible utilizar el script “fiona_projection_selection_write.py” para calcular el buffer de los hospitales? ¿Qué cambios hay que hacerle?

Solución: Como se pretende cambiar la geometría y esta no es una propiedad, hay que comprobar el caso específico al analizar los campos:

if field["name"] == "geometry":
        geomField = field
else:
        fields.append(field)

Luego, si efectivamente hubo una expresión con “geometry” tenemos que poner el tipo específico en el esquema:

if geomField is not None:
        outputSchema["geometry"] = geomField["type"]

y el valor en la feature:

if geomField is not None:
        newFeature["geometry"] = eval(field["expression"])

quedando al final el script así (shape_projection_selection_write.py):

#! /usr/bin/env python

import sys
import fiona
from shapely.geometry import shape, mapping
from shapely.wkt import dumps, loads
file = sys.argv[1]
target = sys.argv[2]
expression = sys.argv[3]

d = fiona.open(file)

outputSchema = {
        "geometry": d.schema["geometry"],
        "properties": {
        }
}

fields = []
geomField = None

for i in range(4, len(sys.argv)):
        fieldExpression = sys.argv[i]

        # field parsing
        asIndex = fieldExpression.find(" as ")
        fieldNameAndType = fieldExpression[:asIndex].strip()
        fieldEvalExpression = fieldExpression[asIndex+4:]
        colonIndex = fieldNameAndType.find(":")
        if colonIndex != -1:
                fieldName = fieldNameAndType[:colonIndex]
                fieldType = fieldNameAndType[colonIndex+1:]
                computed = True
        else:
                fieldName = fieldNameAndType
                fieldType = d.schema["properties"][fieldEvalExpression]
                computed = False
        field = {
                "name" : fieldName,
                "type" : fieldType,
                "expression" : fieldEvalExpression,
                "computed" : computed
        }

        if field["name"] == "geometry":
                geomField = field
        else:
                fields.append(field)
                # create field in new feature
                outputSchema["properties"][field["name"]] = field["type"]

if geomField is not None:
        outputSchema["geometry"] = geomField["type"]

if len(fields) == 0:
        outputSchema["properties"] = d.schema["properties"]

output = fiona.open(target, "w", driver="ESRI Shapefile", crs=d.crs, schema=outputSchema)

for feature in d:
        if eval(expression):
                newFeature = {
                        "geometry" : feature["geometry"],
                        "properties" : {}
                }

                if geomField is not None:
                        newFeature["geometry"] = eval(geomField["expression"])

                # If there are no field ops include all
                if len(fields) == 0:
                        newFeature["properties"] = feature["properties"]
                else:
                        for field in fields:
                                # field evaluation
                                value = None
                                if field["computed"]:
                                        # Expression
                                        value = eval(field["expression"])
                                else:
                                        # Just field reference
                                        value = feature["properties"][field["expression"]]

                                # create field in new feature
                                newFeature["properties"][field["name"]] = value

                output.write(newFeature)

d.close()
output.close()

Ejemplo de uso:

./shape_projection_selection_write.py ~/data/north_carolina/shape/hospitals.shp /tmp/oout.shp 'shape(feature["geometry"]).distance(loads("POINT(446845 161978)")) < 20000' 'geometry:Polygon as mapping(shape(feature["geometry"]).buffer(20000))' 'name as NAME'

¿Qué más?: agrupados

Podemos agrupar con este script (shape_group.py):

#! /usr/bin/env python

import sys
import collections
import fiona
from shapely.geometry import shape, mapping, MultiPoint, MultiLineString, MultiPolygon
from shapely.ops import cascaded_union

file = sys.argv[1]
target = sys.argv[2]
geometryType = sys.argv[3]

d = fiona.open(file)

outputSchema = {
        "geometry": geometryType,
        "properties": {}
}

groupField = None
groupFieldUsed = None
if len(sys.argv) > 4:
        groupField = sys.argv[4]
        groupFieldUsed = True
        outputSchema["properties"][groupField] = d.schema["properties"][groupField]
else:
        groupField = "id"
        groupFieldUsed = False
        outputSchema["properties"]["id"] = "int"

output = fiona.open(target, "w", driver="ESRI Shapefile", crs=d.crs, schema=outputSchema)

classes = {}
counter = 0
total = len(d)
for feature in d:
        print "\rgroup:\t", 50 * counter / total,
        counter = counter + 1

        if groupFieldUsed:
                value = feature["properties"][groupField]
        else:
                value = 0

        if value in classes:
                class_ = classes[value]
        else:
                class_ = []
                classes[value] = class_
        class_.append(feature)

counter = 0
total = len(classes)
for value in classes:
        print "\rgroup:\t", 50 + 50 * counter / total,
        counter = counter + 1

        class_ = classes[value]
        classGeometries = [shape(feature["geometry"]) for feature in class_]
        unionResult = cascaded_union(classGeometries)

        # hack because cascaded_union may not give a collection
        if not isinstance(unionResult, collections.Iterable):
                if geometryType == "MultiPoint":
                        unionResult = MultiPoint([unionResult])
                elif geometryType == "MultiLineString":
                        unionResult = MultiLineString([unionResult])
                elif geometryType == "MultiPolygon":
                        unionResult = MultiPolygon([unionResult])
        feature = {
                "geometry" : mapping(unionResult),
                "properties" : {
                        groupField : value
                }
        }
        output.write(feature)

d.close()
output.close()

y usando estas instrucciones:

./shape_group.py /home/user/data/north_carolina/shape/boundary_county.shp /tmp/groupedByName.shp MultiPolygon NAME
./shape_group.py /home/user/data/north_carolina/shape/boundary_county.shp /tmp/bounds.shp MultiPolygon

¿Y?: Joins

También podemos hacer Joins. Para ello extraemos el código que parsea los parámetros a un módulo “schema_parser”:

def getField(fieldExpression, schema):
        asIndex = fieldExpression.find(" as ")
        fieldNameAndType = fieldExpression[:asIndex].strip()
        fieldEvalExpression = fieldExpression[asIndex+4:]
        colonIndex = fieldNameAndType.find(":")
        if colonIndex != -1:
                fieldName = fieldNameAndType[:colonIndex]
                fieldType = fieldNameAndType[colonIndex+1:]
                computed = True
        else:
                fieldName = fieldNameAndType
                fieldType = schema["properties"][fieldEvalExpression]
                computed = False
        return {
                "name" : fieldName,
                "type" : fieldType,
                "expression" : fieldEvalExpression,
                "computed" : computed
        }

def getFields(args, schema):
        fields = []
        for fieldExpression in args:
                fields.append(getField(fieldExpression, schema))

        return fields

def getGeometryField(fields):
        return next((field for field in fields if field["name"] == "geometry"), None)

def getAlphanumericFields(fields):
        return [field for field in fields if field["name"] != "geometry"]

Y con el siguiente script (shape_join.py):

#! /usr/bin/env python

import schema_parser
import sys
import time
import fiona
from shapely.geometry import shape, mapping
from shapely.ops import cascaded_union
from rtree import index

class SequentialScan:

        def preLoop(self):
                pass

        def featuresFor(self, outerFeature, inner):
                return inner

class SpatialIndexScan:

        innerMemory = []
        idx = index.Index()

        def preLoop(self, inner):
                # Load inner in memory for random access
                for innerFeature in inner:
                        self.innerMemory.append(innerFeature)
                        bounds = shape(innerFeature["geometry"]).bounds
                        self.idx.insert(len(self.innerMemory) - 1, bounds)

        def featuresFor(self, outerFeature, inner):
                ret = []
                # Query the index
                queryResult = self.idx.intersection(shape(outerFeature["geometry"]).bounds)
                for innerFeatureIndex in queryResult:
                        ret.append(self.innerMemory[innerFeatureIndex])

                return ret

outerPath = sys.argv[1]
innerPath = sys.argv[2]
target = sys.argv[3]
scanType = sys.argv[4]
joinCondition = sys.argv[5]

start = time.time()

outer = fiona.open(outerPath)
inner = fiona.open(innerPath)

if scanType == "sequential":
        innerScan = SequentialScan()
elif scanType == "spatial-index":
        innerScan = SpatialIndexScan()

innerScan.preLoop(inner)

combinedSchema = dict(outer.schema.items() + inner.schema.items())
fields = schema_parser.getFields(sys.argv[6:], combinedSchema)
if len(fields) == 0:
        print "field expressions missing"
        sys.exit(-1)
else:
        outputSchema = {
                "properties" : {}
        }
        geomField = schema_parser.getGeometryField(fields)

        if geomField is None:
                print "geometry field expression missing"
                sys.exit(-1)
        else:
                outputSchema["geometry"] = geomField["type"]

        alphanumericFields = schema_parser.getAlphanumericFields(fields)
        for field in alphanumericFields:
                outputSchema["properties"][field["name"]] = field["type"]

output = fiona.open(target, "w", driver="ESRI Shapefile", crs=outer.crs, schema=outputSchema)
counter = 0
total = len(outer)
for outerFeature in outer:
        print "\rjoin:\t\t", 100 * counter / total,
        counter = counter + 1

        scannedFeatures = innerScan.featuresFor(outerFeature, inner)
        for innerFeature in scannedFeatures:
                if eval(joinCondition):
                        newFeature = {
                                "geometry" : eval(geomField["expression"]),
                                "properties" : {}
                        }
                        for field in alphanumericFields:
                                # field evaluation
                                value = eval(field["expression"])

                                # create field in new feature
                                newFeature["properties"][field["name"]] = value

                        output.write(newFeature)
output.close()
inner.close()
outer.close()

end = time.time()
print end - start, "seconds"

Podemos hacer joins. Por ejemplo podemos cortar la malla que creamos con el contorno de north_carolina, calculado con un agrupado:

./shape_join.py /tmp/bounds.shp /tmp/grid.shp /tmp/cutted_grid.shp spatial-index 'shape(outerFeature["geometry"]).intersects(shape(innerFeature["geometry"]))' 'geometry:Polygon as mapping(shape(outerFeature["geometry"]).intersection(shape(innerFeature["geometry"])))' 'gid:int as innerFeature["properties"]["gid"]'

Ahora podemos asignar a cada hospital el código de la celda de la malla recién calculada:

./shape_join.py /tmp/cutted_grid.shp ~/data/north_carolina/shape/hospitals.shp /tmp/hospital_gridcode.shp spatial-index 'shape(outerFeature["geometry"]).contains(shape(innerFeature["geometry"]))' 'geometry:Point as innerFeature["geometry"]' 'gid:int as outerFeature["properties"]["gid"]'

Usando el script de agrupado, podemos agrupar por celda:

./shape_group.py /tmp/hospital_gridcode.shp /tmp/hospital_group_by_cell.shp MultiPoint gid

para obtener el número de hospitales por celda:

./shape_process.py /tmp/hospital_group_by_cell.shp /tmp/num_hospitals_cell.shp True 'gid as gid' 'count:int as len(list(shape(feature["geometry"])))'

Por último podemos hacer un join con la malla inicial, por el código de malla y obtener el número de hospitales por superficie:

./shape_join.py /tmp/num_hospitals_cell.shp /tmp/cutted_grid.shp /tmp/density.shp sequential 'outerFeature["properties"]["gid"] == innerFeature["properties"]["gid"]' 'geometry:Polygon as innerFeature["geometry"]' 'gid:int as outerFeature["properties"]["gid"]' 'density:float as outerFeature["properties"]["count"] / shape(innerFeature["geometry"]).area'

Resumiendo, aquí tenemos el proceso para el cálculo:

./fiona_grid.py ~/data/north_carolina/shape/hospitals.shp 50000 /tmp/grid.shp
./shape_group.py /home/user/data/north_carolina/shape/boundary_county.shp /tmp/bounds.shp MultiPolygon
./shape_join.py /tmp/bounds.shp /tmp/grid.shp /tmp/cutted_grid.shp spatial-index 'shape(outerFeature["geometry"]).intersects(shape(innerFeature["geometry"]))' 'geometry:Polygon as mapping(shape(outerFeature["geometry"]).intersection(shape(innerFeature["geometry"])))' 'gid:int as innerFeature["properties"]["gid"]'
./shape_join.py /tmp/cutted_grid.shp ~/data/north_carolina/shape/hospitals.shp /tmp/hospital_gridcode.shp spatial-index 'shape(outerFeature["geometry"]).contains(shape(innerFeature["geometry"]))' 'geometry:Point as innerFeature["geometry"]' 'gid:int as outerFeature["properties"]["gid"]'
./shape_group.py /tmp/hospital_gridcode.shp /tmp/hospital_group_by_cell.shp MultiPoint gid
./shape_process.py /tmp/hospital_group_by_cell.shp /tmp/num_hospitals_cell.shp True 'gid as gid' 'count:int as len(list(shape(feature["geometry"])))'
./shape_join.py /tmp/num_hospitals_cell.shp /tmp/cutted_grid.shp /tmp/density.shp sequential 'outerFeature["properties"]["gid"] == innerFeature["properties"]["gid"]' 'geometry:Polygon as innerFeature["geometry"]' 'gid:int as outerFeature["properties"]["gid"]' 'density:float as outerFeature["properties"]["count"] / shape(innerFeature["geometry"]).area'